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Overview & motivation



Overview
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What we do

We apply deep reinforcement learning (DRL) to solve a general equilibrium model

commonly used in the learning literature:

� non-linear Taylor Rule with two steady states

� interaction of fiscal and monetary in different policy regimes

But, first things first ...
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What is and why learning in (macro)economics?

� Rational expectations (RE) approach convenience choice to solve a model, but

not necessarily how people and businesses actually behave

� Approach to bounded rationality: Specify agent knowledge and behaviour away

from RE

� Arguably, every state of the world, e.g. RE equilibrium, must be attainable from

some starting point, i.e. learning.

� Policy reaction distinctively different under learning, e.g. forward guidance or

stability of Taylor rules

See Eusepi and Preston (2018) and Hommes (2021) for recent reviews.
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Example: Adaptive learning (Evans and Honkapohja, 2001)

Agents are “econometricians” trying to estimate expected quantities

Et [xt+1] = xet+1 = xet + φt(xt−1 − xet ) , (1)

with a gain series φt . Together with the (optimal) behavioural rules, i.e. linearised

FOCs, this leads to a set of ordinary differential equations determining the expectations

(E-)stability of the model.

That is, if a steady state is stable under learning, which then serves as a selection

criterion.
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Deep reinforcement learning



Advances in Artificial Intelligence
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The reinforcement learning (RL) setting

Agent Environment 

Action at

State , Reward st+1 rt

(st, at) → st+1

1. Agent observes state of the world st

2. Agent takes actions at(st)

3. Agent receives reward rt from environment

4. Actions and state lead to state transition of the environment st+1

This setting is very general. See Sutton and Barto (2018) for a comprehensive

introduction. 6



Formal RL definition

The agent aims to maximise expected cumulative lifetime reward, or expected return,

max
P

Et [Gt ] with Gt ≡
∞∑
k=0

βk rt+1+k(s) , (2)

following a behavioural policy P : st → at , with st ∈ S ⊂ Rns (state space) and

at ∈ A ⊂ Rna (action space).

The environment the agents interaction with returns a reward and a new state, i.e.

E : (st , at)→ (st+1, rt), with rt ∈ R.

The state transitions is modelled as a Markov decision process (MDP)

T : S × A× S → Pr(st+1|st , at) ∈ [0, 1].

Problem: Writing down T is simple, knowing Et [Gt ] and Pr(st+1|st , at) is hard

(dynamic programming, value function iteration, etc.). 7



State and action values

The expected return is maximised by finding the policy P∗, which maximises the values

function

VP(s) = EP
[
Gt |s = st

]
(3)

= max
a∈A

EP
[
Gt |s = st , a = at

]
= max

a∈A
Q(s, a) , (4)

with Q(s, a) the action-value function. We are done if we know P∗ and V ∗/Q∗.

There are different ways to address this problem, which is an area of active AI research.
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Deep reinforcement learning (DRL)

In DRL, functions P and V /Q are parameterised using deep artificial neural networks

(Goodfellow et al., 2016), i.e. neural nets with several hidden layers, Pφ and Qθ:

Source: Chakraborty and Joseph (2017). DRL approach 9



General DRL setting for (macro)economics

� Write down model (environment and state)

� Specify learning agents, e.g. households, firms, etc., and their actions

� Specify state transitions as MDP

� Learning using DRL algorithm (e.g. Haarnoja et al. (2018)): learning protocol

1. sample state transition(s) and store in memory

2. train Pφ and Qθ from memory

3. test Pφ and Qθ with new state transitions and metric of choice
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Generalised policy iteration (GPI)

GPI connects economics and learning, and conventional learning approaches with RL

V ∗: steady state values, P∗: FOC.
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Potential advantages of DRL in (macro)economics

� Global solution technique with no need of linearisation

� Principled way to (bounded) rationality, i.e. agent behaviour and knowledge (this

paper)

� General approach to handle heterogeneity, e.g. household income or age

distribution. See AA colleagues (Hill et al., 2021).
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Examples of RL in economics and finance

� Charpentier et al. (2020): Brief introduction to RL in a economics and finance

background

� Zheng et al. (2020): Learning in large-scale geographic ABM

� Calvano et al. (2020): Investigate algorithmic collusion in financial markets

� Chaudhry and Oh (2020): Extract high-frequency expectations in financial

markets to measure information effects

� Castro et al. (2021): Learn policy rules of banks participating in a high-value

payments system
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The model environment



Households

A single representative household maximises its expected lifetime utility, subject to an

inter-temporal budget constraint:

max
ct ,mt ,nt

E0

∞∑
t=0

βtU(ct ,mt , nt) s.t. (5)

Mt + Bt + Ct = Mt−1 + Bt−1Rt−1 + Wtnt − Ptτt , (6)

with Pt the price level at time t, xt = Xt
Pt
, x ∈ {Mt ,Bt ,Ct ,Wt} relate real and nominal

money, government bonds, consumption and wages, and τt is a real lump-sum tax to

the government each period.

We take the utility (Evans and Honkapohja, 2005)

U(ct ,mt , nt) =
c1−σt

1− σ
+ χ

m1−σ
t

1− σ
− n1+ϕt

1 + ϕ
. (7)
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Firms

A single representative firm produces according to

yt = εyt nt , (8)

with technology (shock) εyt , maximising profits

max
wt

yt − wtnt , (9)

by setting setting the optimal wage1

wt = εyt . (10)

1This could be replaced by DRL resulting in a multi-agent learning problem.
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Market clearing

Markets clear every period, i.e.

yt = ct (goods) , (11)

and

cσt n
ϕ
t = εyt (labour). (12)
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Government

The government issues interest-bearing bonds and non-interesting bearing currency

(money), and collects taxes under the real inter-temporal government budget

constraint (GBC)
mt + bt + τt =

mt−1
πt

+ Rt−1
bt−1
πt

, (13)

subject to the transversality condition

lim
j→∞

j∏
k=0

(
πt+k

Rt+k−1
)bt+j = 0 . (14)

Fiscal policy takes the linear tax rule as in Leeper (1991)

τt = γ0 + γbt−1 + ετt , (15)

where ετt is an exogenous random shock that is assumed to be i.i.d. with mean zero,

and 0 ≤ γ ≤ β−1. We follow Leeper (1991) to define fiscal policy as being active if

γ < β−1 − 1 (AFP) and passive if γ > β−1 − 1 (PFP). 17



Central bank

We follow Benhabib et al. (2001) and Evans and Honkapohja (2005) with a global

non-linear interest rate rule

Rt − 1 = εRt f (πt) (Taylor rule), (16)

with f (π) assumed to be non-negative and nondecreasing, and εRt is an exogenous,

i.i.d. and positive random shock with a mean of one:

f (πt) = (R∗ − 1)(
πt
π∗

)
AR∗
R∗−1 , (17)

where A > 1, and π∗ > 1 is the inflation target.
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Steady states

The Taylor rule (16) implies two steady states at the intersection with the Euler/Fisher

equation

π

β
= 1 + (R∗ − 1)(

π

π∗
)

AR∗
R∗−1 . (18)

Monetary policy (MP) is said to be active

at π∗ (f ′(πt) > 1; AMP) and passive at πL

(f ′(πt) < 1; PMP).

  

R 

𝜋 𝜋" 𝜋∗ 

𝜋
𝛽 

This situation is very general and commonly investigated in learning in

macroeconomics. 19



Policy regimes

Using a standard parameterisation and local stability analysis we obtain four policy regimes

AMP (π∗) PMP (πL)

PFP AFP PFP AFP

πss 1.0100 1.0100 1.0014 1.0014

mss 1.7157 1.7157 2.0614 2.0614

css/nss/yss 1 1 1 1

bss 4 4 4 4

uss -1.0170 -1.0170 -1.0118 -1.0118

γ0 -0.0566 0.0234 -0.0426 0.0375

20



Joining the model and RL

State representation
st =

(
mt−1, bt−1, πt−1, ct−1, nt−1, ε

τ
t , ε

R
t , ε

y
t

)
. (19)

Household agent actions
at =

(
cactt , bactt , nt

)
, (20)

where xactt = Xt/Pt−1, x ∈ {c , b}. Information flow and market clearing

πt = cactt /yt , (21)

ct = cactt /πt , (22)

bt = bactt /πt . (23)

Model environment: Production, market clearing, pricing, GBC, FP, MP.

No first-order conditions (FOC)
21



State transition

1. Observe state st

2. Take actions Pφ(st) = at = (bactt , cactt , nt)

3. Production (8) takes place and firm sets wages (10)

4. Markets clear: Inflation πt is set by (21)

5. This determines real consumption ct and bond holdings bt (22)-(23)

6. Policy realisations:

� The monetary authority sets the current gross interest rate Rt via the Taylor rule (16)

� The government raises taxes τt (15)

7. The money holdings mt are realised from the GBC (13)

8. Agent obtains reward rt = U(ct ,mt , nt)

9. Next periods shocks are realised, (ετt+1, ε
R
t+1, ε

y
t+1)

10. State update st ← st+1 =
(
mt , bt , πt , ct , nt , ε

τ
t+1, ε

R
t+1, ε

y
t+1

)
22



Results



Steady state learning in the AMP-PFP regime

Learning phases

� random (agent

initialisation)

� learning

� rational

23



Steady state learning in all regimes (charts)
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Steady state learning in all regimes (table)

AMP (π∗) PMP (πL)

PFP AFP PFP AFP

AL yes no no yes

RL yes yes yes† yes†

|∆ss | (%) for RL

π 0.346 0.278 9.217 5.209

b 0.005 0.004 0.038 0.024

n 0.004 0.003 0.009 0.003

m 0.091 0.089 11.569 7.364

u 0.003 0.003 0.346 0.196

†imprecision in learning about inflation at πL.
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Measuring bounded rationality

The household is said to behave rational if it follows FOC. During learning, we define

the FOC-distance to measure deviations in a standardised way

dFOC
x ≡

∣∣FOC (x)− 1
∣∣ , (24)

The explicit expression for the Euler equation, or Euler distance, is

dFOC
π =

∣∣∣∣β Et

[(ct+1

ct

)−σ Rt

πt+1

]
− 1

∣∣∣∣ . (25)

FOC distances evaluate agent actions P(s). Analogous measures for V /Q can be

derived with respect to state values.
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FOC learning in the AMP-PFP regime

The same Learning phases

as expected by GPI.
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Measuring inflation expectations during learning

Implied agent expectations can be extracted from realised values
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Future steps

� Improve and better understand learning robustness

� Aim for truly global learning

� Compare IRF with those from adaptive learning

� Conduct experiments: policy or regimes shifts
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Take-away messages

� DRL offers a general approach to solve structural macro models

� Quantify bounded rationality and learning in a principled way: agent behaviour as

a free model parameter

� Global solution techniques which can also address heterogeneity

� All policy regimes are learnable under DRL

� Promising toolbox for (macro)economics

� Learning and convergence technically challenging
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Thanks for listening

Q& A
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Actor-critic DRL setting

P and Q fulfil the Bellman equation

Q(st , at) = r(st) + βEP
[
Q(st+1, at+1)

]
. (26)

using sampled state transitions as observations, i.e. interactions of the agent and the

environment, and standard optimisation techniques like stochastic gradient descent,

the policy and action-value function networks can be trained by iteratively minimising

the Bellman residuum,
L(φ, θ) = Est ,at ,rt

[
1

2

(
Qθ(st , at)− Q̂θ(st , at)

)2]
, (27)

with Q̂θ(st , at) = rt(at , st) + β EP
[
Qθ
(
st+1,Pφ(st+1)

)]
. (28)

We use Haarnoja et al. (2018). The code we used for optimisation is available at

https://github.com/pranz24/pytorch-soft-actor-critic.

back

https://github.com/pranz24/pytorch-soft-actor-critic


Household learning protocol
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Model dynamic properties I

The deterministic steady states in the absence of random shocks is characterised by

the following set of equations:

Euler / Fisher Equation: R =
π

β
(29)

Money Demand: m = y
(π − β
χπ

)−1/σ
(30)

Monetary Policy: R = 1 + (R∗ − 1)(
π

π∗
)

AR∗
R∗−1 (31)

Fiscal Policy & GBC: b = (
1

β
− 1− γ)−1[γ0 + (1− 1

π
)m] (32)

Output: yσ+ϕ = 1 (33)

Equation (29) and (31) together determine the steady state of inflation:

π

β
= 1 + (R∗ − 1)(

π

π∗
)

AR∗
R∗−1 (34)
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Model dynamic properties II

In the neighbourhood of either steady state, our model can be described by a linear

approximation for πt and bt of the form

[
π̂t

b̂t

]
= B

[
Êtπt+1

Êtbt+1

]
+ C

ε̂Rtε̂τt
ε̂yt

 . (35)

Proposition:(Evans and Honkapohja, 2007)] In the linear system given by (35),

(i) If fiscal policy is passive, |γ − β−1| < 1, the steady state π∗ is locally determinate

and the steady state πL is locally indeterminate.

(ii) If fiscal policy is active, |γ − β−1| > 1, the steady state π∗ is locally explosive and

the steady state πL is locally determinate.
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Model parameters

parameter value description

β 0.9900 discount factor

σ 3.0000 inverse of intertemporal elasticity of consumption and money holdings

ϕ 1.0000 inverse of Frisch elasticity of labor supply

χ 0.1000 relative preference weight of money holdings

γP 0.0200 passive fiscal policy (PFP) coefficient

γA 0.0000 active fiscal policy (AFP) coefficient

A 1.3000 Taylor rule coefficient

π∗ 1.0100 target gross high-inflation rate (4% net per annum)

πL 1.0014 implied gross low-inflation steady state (see Figure ??)

ετt 0.0005 monetary policy shock (std. dev.)

εRt 0.0005 fiscal policy shock (std. dev.)

εyt 0.0005 technology shock (std. dev.)

Baseline model parameterisation. The shock series ετt , εRt , εyt follow log-normal, normal and

normal distributions, with means of one, zero and one, respectively.
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Calvano, E., Calzolari, G., Denicolò, V., and Pastorello, S. (2020). Artificial intelligence, algorithmic

pricing, and collusion. American Economic Review, 110(10):3267–97.

Castro, P. S., Desai, A., Du, H., Garratt, R., and Rivadeneyra, F. (2021). Estimating Policy Functions

in Payments Systems Using Reinforcement Learning. Staff Working Papers 21-7, Bank of Canada.

Chakraborty, C. and Joseph, A. (2017). Machine learning at central banks. Staff Working Paper No.

674, Bank of England.

Charpentier, A., Elie, R., and Remlinger, C. (2020). Reinforcement learning in economics and finance.

Technical report.

Chaudhry, A. and Oh, S. (2020). High-frequency expectations from asset prices: A machine learning

approach. Technical report.



References ii

Eusepi, S. and Preston, B. (2018). The science of monetary policy: An imperfect knowledge

perspective. Journal of Economic Literature, 56(1):3–59.

Evans, G. W. and Honkapohja, S. (2001). Learning and Expectations in Macroeconomics. Princeton

University Press.

Evans, G. W. and Honkapohja, S. (2005). Policy interaction, expectations and the liquidity trap.

Review of Economic Dynamics, 8:303–323.

Evans, G. W. and Honkapohja, S. (2007). Policy interaction, learning and the fiscal theory of prices.

Macroeconomic Dynamics, 11:665–690.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press

Cambridge.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. arXiv-eprint, 1801.01290.



References iii

Hill, E., Bardoscia, M., and Turrell, A. (2021). Solving heterogeneous general equilibrium economic

models with deep reinforcement learning. Technical report.

Hommes, C. (2021). Behavioral and experimental macroeconomics and policy analysis: A complex

systems approach. Journal of Economic Literature, 59(1):149–219.

Leeper, E. M. (1991). Equilibria under ‘active’and ‘passive’monetary and fiscal policies. Journal of

Monetary Economics, 27(1):129–147.

Sutton, R. and Barto, A. (2018). Reinforcement Learning: An Introduction. The MIT Press, second

edition.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., and Socher, R. (2020).

The ai economist: Improving equality and productivity with ai-driven tax policies.


	Overview & motivation
	Deep reinforcement learning
	The model environment
	Results
	Appendix

